Oxidative stress: a radical way to stop making bile.

نویسندگان

  • Marcelo G Roma
  • Enrique J Sanchez Pozzi
چکیده

Oxidative stress is a common feature in most hepatopathies. In recent years, evidence has accumulated that reactive oxygen species (ROS) induce a number of functional changes either deleterious or adaptive in the capability of the hepatocytes to produce bile and to secrete exogenous and endogenous compounds. This review is aimed to describe the mechanisms involved in these alterations. For this purpose, we will summarize: 1) The current evidence that acutely-induced oxidative stress is cholestatic, by describing the mechanisms underlying the hepatocyte secretory failure, including the disorganization of the actin cytoskeleton and its most noticeable consequences, the impairment of tight-junctional structures and the endocytic internalization of canalicular transporters relevant to bile formation. 2) The role for oxidative-stress-activated signalling pathways in the pathomechanisms described above, particularly those involving Ca2+ elevation and its consequent activation of Ca2+ -dependent PKC isoforms. 3) The mechanisms involved in the adaptive response against oxidative stress mediated by ROS-responsive transcription factors, involving up-regulation of GSH-synthesizing enzymes, GSH-detoxifying enzymes and the hepatocellular efflux pumps; this response enhances the co-coordinated inactivation by GSH conjugation of lipid peroxides and their further cellular extrusion. 4) The manner this adaptive response can be surpassed by the sustained production of ROS, thus inducing transcriptional and posttranscriptional changes in transporters relevant to bile formation, as has been shown to occur, for example, after long-term administration of aluminum to rats, in the Long-Evans Cinnamon rat (a model of chronic hepatic copper accumulation mimicking Wilson's disease), and in ischemia-reperfusion injury.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bile acids decrease intracellular bilirubin levels in the cholestatic liver: implications for bile acid-mediated oxidative stress

High plasma concentrations of bile acids (BA) and bilirubin are hallmarks of cholestasis. BA are implicated in the pathogenesis of cholestatic liver damage through mechanisms involving oxidative stress, whereas bilirubin is a strong antioxidant. We evaluated the roles of bilirubin and BA on mediating oxidative stress in rats following bile duct ligation (BDL). Adult female Wistar and Gunn rats ...

متن کامل

Polyphenols from Camellia sinenesis attenuate experimental cholestasis-induced liver fibrosis in rats.

Accumulation of hydrophobic bile acids during cholestasis leads to generation of oxygen free radicals in the liver. Accordingly, this study investigated whether polyphenols from green tea Camellia sinenesis, which are potent free radical scavengers, decrease hepatic injury caused by experimental cholestasis. Rats were fed a standard chow or a diet containing 0.1% polyphenolic extracts from C. s...

متن کامل

Hepatoprotective and Antioxidative Effect of Rosmarinic Acid Against Bile Duct Ligated (BDL)-Induced Cholestatic in Male Rats

Aims: Cholestasis is a type of liver disease due to structural damage and dysfunction of hepatobiliary system which at first, results in accumulation of bile acids and other toxins in plasma and hepatic tissue. The aim of the current study was to investigate the possible hepatoprotective effects of rosmarinic acid against oxidative stress and liver injury in bile duct ligation (BDL)- induced ch...

متن کامل

Evaluation of Oxidative Stress Status Following Polyherbal Formulation Therapy In Patients of Cholelithiasis with Choledocholithiasis

Free radicals produce persistent oxidative stress in biological system and are highly reactive molecules produced as a byproduct of metabolism. A reactive free redical generated in the body reacts with non-radical molecules and results in free radical chain reaction leading to formation of new free radicals. If the defense mechanism of body fails to combat them or they are not properly utilized...

متن کامل

Diabetes and Oxidative Stress: The Mechanism and Action

Abstract Diabetes mellitus is one of the major metabolic disorders. Diabetes is recognized for severe complications including diabetic nephropathy, neuropathy and retinopathy. Long-lasting effect of hyperglycemia results in increased oxidative stress. Oxidative stress results from an imbalance between radical-generating and radical scavenging systems. Increased oxidative stress has been shown ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Annals of hepatology

دوره 7 1  شماره 

صفحات  -

تاریخ انتشار 2008